A low-cost, easy to make ultrasound phantom for training healthcare providers in pleural fluid identification and task simulation in ultrasound-guided thoracentesis

Juliana Wilson, DO, MPH⁎, Carrie Myers, RN, Resa E. Lewiss, MD
University of Colorado School of Medicine, Aurora, CO, United States

ARTICLE INFO

Keywords:
Point-of-care ultrasound
Phantom
Education
Thoracentesis

Many training programs are utilizing simulation-based learning to provide increased opportunities to practice procedural skills in a low-risk setting. These opportunities promote confidence, expertise, and long-term skill retention.1 The use of point of care ultrasound (POCUS) for thoracentesis has been shown to decrease complications associated with this procedure.1,2 The phantom described in this article can be used in the ultrasound identification of thoracic anatomy (lung parenchyma, diaphragm, pleural fluid, pleural lines and ribs shadowing). The phantom can also be used for needle tracking and eye-hand coordination for training of health care providers in POCUS guided thoracentesis. It can be difficult to learn and perform thoracentesis in real time on patients while a phantom or simulation-based learning provides a low-risk setting in which multiple attempts can be made (Figs. 1–3).

Questions

1. Simulation education with point-of-care ultrasound for thoracentesis assists with the following
 a. Decreases incidence wrong side procedures
 b. Decreases incidence of pneumothorax
 c. Increases patient comfort
 d. Does not affect the performance of thoracentesis
2. Simulation education allows learners to identify pathology and needles with ultrasound. This allows learned to do the following:
 a. Track needles to perform procedures safely
 b. Estimate the size of the pneumonia
 c. Determine the cause of the pleural effusion
 d. Simulate an environment allowing learners to be completely competent

Answers

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.visj.2017.03.010.
References

Fig. 1. Plastic wrap is placed above the sponge and water layer. The gelatin thoracic cage is then placed on top of the plastic wrap.

Fig. 2. Ultrasound image of the simulated lung parenchyma, pleural fluid and rib shadow using a linear transducer.

Fig. 3. Phantom ultrasound image with needle tracking during simulated thoracentesis.